Search

The land-to-ocean loops of the global carbon cycle - Nature.com

jumianta.blogspot.com

Abstract

Carbon storage by the ocean and by the land is usually quantified separately, and does not fully take into account the land-to-ocean transport of carbon through inland waters, estuaries, tidal wetlands and continental shelf waters—the ‘land-to-ocean aquatic continuum’ (LOAC). Here we assess LOAC carbon cycling before the industrial period and perturbed by direct human interventions, including climate change. In our view of the global carbon cycle, the traditional ‘long-range loop’, which carries carbon from terrestrial ecosystems to the open ocean through rivers, is reinforced by two ‘short-range loops’ that carry carbon from terrestrial ecosystems to inland waters and from tidal wetlands to the open ocean. Using a mass-balance approach, we find that the pre-industrial uptake of atmospheric carbon dioxide by terrestrial ecosystems transferred to the ocean and outgassed back to the atmosphere amounts to 0.65 ± 0.30 petagrams of carbon per year (±2 sigma). Humans have accelerated the cycling of carbon between terrestrial ecosystems, inland waters and the atmosphere, and decreased the uptake of atmospheric carbon dioxide from tidal wetlands and submerged vegetation. Ignoring these changing LOAC carbon fluxes results in an overestimation of carbon storage in terrestrial ecosystems by 0.6 ± 0.4 petagrams of carbon per year, and an underestimation of sedimentary and oceanic carbon storage. We identify knowledge gaps that are key to reduce uncertainties in future assessments of LOAC fluxes.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Approaches to quantify the pre-industrial carbon budget.
Fig. 2: The global carbon budget with LOAC fluxes.
Fig. 3: Bottom-up estimates of the pre-industrial open-ocean carbon budget in three latitudinal bands.

Data availability

Source data for Figs. 13, Supplementary Figs. 1, 2 are provided with the paper. All numbers and their associated uncertainties shown in Fig. 2 are synthesized in Supplementary Table 1 and described in detail in Supplementary Sections 1, 2.

Code availability

No code was used to generate the figures in this study.

References

  1. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press 2013).

  2. Ciais, P. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 6 (IPCC, Cambridge Univ. Press, 2013).

  3. Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).

    ADS  Google Scholar 

  4. Billen, G., Lancelot, C. & Meybeck, M. in Ocean Margin Processes in Global Change: Report of the Dahlem Workshop on Ocean Margin Processes in Global Change (eds Mantoura, R. F. C. et al.) 19–44 (Wiley, 1991).

  5. Ludwig, W., Probst, J. L. & Kempe, S. Predicting the oceanic input of organic carbon by continental erosion. Glob. Biogeochem. Cycles 10, 23–41 (1996).

    ADS  CAS  Google Scholar 

  6. Mackenzie, F. T., De Carlo, E. H. & Lerman, A. in Treatise on Estuarine and Coastal Science (eds Middelburg, J. J. & Laane, R.) Ch. 5.10 (Elsevier, 2012).

  7. Meybeck, M. Carbon, nitrogen, and phosphorus transport by world rivers. Am. J. Sci. 282, 401–450 (1982).

    ADS  CAS  Google Scholar 

  8. Regnier, P. et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 6, 597–607 (2013). A study quantifying the anthropogenic perturbation of the LOAC carbon fluxes, highlighting the need to include the LOAC in anthropogenic carbon budgets.

    ADS  CAS  Google Scholar 

  9. Battin, T. J. et al. The boundless carbon cycle. Nat. Geosci. 2, 598–600 (2009).

    ADS  CAS  Google Scholar 

  10. Borges, A. V., Dellile, B. & Frankignoulle, M. Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystems counts. Geophys. Res. Lett. 32, L14601 (2005).

    ADS  Google Scholar 

  11. Cai, W.-J., Dai, M. & Wang, Y. Air–sea exchange of carbon dioxide in ocean margins: a province-based synthesis. Geophys. Res. Lett. 33, L12603 (2006).

    ADS  Google Scholar 

  12. Cole, J. J. et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 171–184 (2007). Pioneering study highlighting the much larger inland water carbon fluxes and the need to revise the ‘river pipeline’ model.

    CAS  Google Scholar 

  13. Mulholland, P. J. & Elwood, J. W. The role of lake and reservoir sediments as sinks in the perturbed global carbon cycle. Tellus 34, 490–499 (1982).

    ADS  CAS  Google Scholar 

  14. Richey, J. E. in The Global Carbon Cycle, Integrating Humans, Climate, and the Natural World Vol. 17 (eds Field, C. B. & Raupach, M. R.) 329–340 (Island Press, 2004).

  15. Tranvik, L. J. et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 54, 2298–2314 (2009).

    ADS  CAS  Google Scholar 

  16. Wollast, R. & Mackenzie, F. T. in Climate and Geo-Sciences (eds Berger, A. et al.) 453–473 (Kluwer Academic Publishers, 1989).

  17. Mackenzie, F. T., Andersson, A. J., Lerman, A. & Ver, L. M. in The Sea Vol. 13 (eds Robinson, A. R. & Brink, K. H.) 193–225 (Harvard Univ. Press, 2005). A landmark study revealing the quantitative significance of the LOAC for the global carbon budget.

  18. Ciais, P. et al. Current systematic carbon‐cycle observations and the need for implementing a policy‐relevant carbon observing system. Biogeosciences 11, 3547–3602 (2014).

    ADS  CAS  Google Scholar 

  19. Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013). A spatially resolved assessment of CO2 emissions from the global inland water network, revealing the very efficient carbon turnover between terrestrial and freshwater ecosystems.

    ADS  CAS  PubMed  Google Scholar 

  20. Bauer, J. E. et al. The changing carbon cycle of the coastal ocean. Nature 504, 61–70 (2013).

    ADS  CAS  PubMed  Google Scholar 

  21. Sarmiento, J. L. & Sundquist, E. T. Revised budget for the oceanic uptake of anthropogenic carbon dioxide. Nature 356, 589–593 (1992). A study quantifying the pre-industrial land-to-ocean carbon transfers and the resulting open-ocean outgassing.

    ADS  CAS  Google Scholar 

  22. Amiotte-Suchet, P. & Probst, J.-L. A global model for present day atmospheric/soil CO2 consumption by chemical erosion of continental rocks (GEM-CO2). Tellus B 47, 273–280 (1995).

    ADS  Google Scholar 

  23. Jacobson, A. R., Fletcher, S. E. M., Gruber, N., Sarmiento, J. L. & Gloor, M. A joint atmosphere–ocean inversion for surface fluxes of carbon dioxide: 1. Methods and global-scale fluxes. Glob. Biogeochem. Cycles 21, GB1019 (2007).

    ADS  Google Scholar 

  24. Resplandy, L. et al. Revision of global carbon fluxes based on a reassessment of oceanic and riverine carbon transport. Nat. Geosci. 11, 504–509 (2018). A recent study advocating for an upward revision of the pre-industrial riverine and oceanic carbon transports, suggesting a tighter connection between the land and ocean carbon cycles.

    ADS  CAS  Google Scholar 

  25. Le Quéré, C. et al. Global carbon budget 2017. Earth Syst. Sci. Data 10, 405–448 (2018a).

    ADS  Google Scholar 

  26. Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018b).

    ADS  Google Scholar 

  27. Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).

    ADS  Google Scholar 

  28. Galy, V., Peucker-Ehrenbrink, B. & Eglinton, T. Global carbon export from the terrestrial biosphere controlled by erosion. Nature 521, 204–207 (2015).

    ADS  CAS  PubMed  Google Scholar 

  29. Lacroix, F., Ilyina, T. & Hartmann, J. Oceanic CO2 outgassing and biological production hotspots induced by pre-industrial river loads of nutrients and carbon in a global modelling approach. Biogeosciences 17, 55–88 (2020).

    ADS  CAS  Google Scholar 

  30. Li, M. et al. The carbon flux of global rivers: a re‐evaluation of amount and spatial patterns. Ecol. Indic. 80, 40–51 (2017).

    CAS  Google Scholar 

  31. Li, M. et al. Modeling global riverine DOC flux dynamics from 1951 to 2015. J. Adv. Model. Earth Syst. 11, 514–530 (2019).

    ADS  Google Scholar 

  32. Luijendijk, E., Gleeson, T. & Moosdorf, N. Fresh groundwater discharge insignificant for the world’s oceans but important for coastal ecosystems. Nat. Commun. 11, 1260 (2020). A global, spatially resolved quantitative assessment of carbon fluxes through the subsurface, suggesting a relatively minor contribution of the fresh groundwater pathway to the land–ocean exchanges.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wagner, S. et al. Soothsaying DOM: a current perspective on the future of oceanic dissolved organic carbon. Front. Marine Sci. 7, 341 (2019).

    ADS  Google Scholar 

  34. Duarte, C. M. Reviews and syntheses: hidden forests, the role of vegetated coastal habitats in the ocean carbon budget. Biogeosciences 14, 301–310 (2017).

    ADS  CAS  Google Scholar 

  35. Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742 (2016).

    ADS  CAS  Google Scholar 

  36. Laruelle, G. G. et al. Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins. Hydrol. Earth Syst. Sci. 17, 2029–2051 (2013).

    ADS  Google Scholar 

  37. Roobaert, A. et al. The spatiotemporal dynamics of the sources and sinks of CO2 in the global coastal ocean. Glob. Biogeochem. Cycles 33, 1693–1714 (2019).

    ADS  CAS  Google Scholar 

  38. Windham-Myers, L. et al. in Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report (eds Cavallaro, N. et al.) Ch. 15 (US Global Change Research Program, 2018).

  39. Bourgeois, T. et al. Coastal-ocean uptake of anthropogenic carbon. Biogeosciences 13, 4167–4185 (2016). A study quantifying the anthropogenic perturbation of CO2 uptake by continental shelf waters, suggesting a small pre-industrial sink as further corroborated by the recent work by ref. 55.

    ADS  CAS  Google Scholar 

  40. Chmura, G. L., Anisfeld, S. C., Cahoon, D. R. & Lynch, J. C. Global carbon sequestration in tidal, saline wetland soils. Glob. Biogeochem. Cycles 17, 1111 (2003).

    ADS  Google Scholar 

  41. Duarte, C. M., Middelburg, J. J. & Caraco, N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2, 1–8 (2005). Pioneering study highlighting the quantitative role of coastal vegetation in the fixation, burial and lateral carbon exports to the open ocean and their anthropogenic perturbation.

    ADS  CAS  Google Scholar 

  42. LaRowe, D. E. et al. Organic carbon and microbial activity in marine sediments on a global scale throughout the quaternary. Geochim. Cosmochim. Acta 286, 227–247 (2020).

    ADS  CAS  Google Scholar 

  43. Smith, R. W., Bianchi, T. S., Allison, M., Savage, C. & Galy, V. High rates of organic carbon burial in fjord sediments globally. Nat. Geosci. 8, 450–453 (2015).

    ADS  CAS  Google Scholar 

  44. O’Mara, N. & Dunne, J. Hot spots of carbon and alkalinity cycling in the coastal oceans. Sci. Rep. 9, 4434 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  45. Ouyang, X. & Lee, S. Updated estimates of carbon accumulation rates in coastal marsh sediments. Biogeosciences 11, 5057–5071 (2014).

    ADS  Google Scholar 

  46. Holgerson, M. A. & Raymond, P. A. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat. Geosci. 9, 222–226 (2016).

    ADS  CAS  Google Scholar 

  47. Lauerwald, R., Laruelle, G. G., Hartmann, J., Ciais, P. & Regnier, P. A. G. Spatial patterns in CO2 evasion from the global river network. Glob. Biogeochem. Cycles 29, 534–554 (2015).

    ADS  CAS  Google Scholar 

  48. Marx, A. et al. A review of CO2 and associated carbon dynamics in headwater streams: a global perspective. Rev. Geophys. 55, 560–585 (2017).

    ADS  Google Scholar 

  49. Mendonça, R. et al. Organic carbon burial in global lakes and reservoirs. Nat. Commun. 8, 1694 (2017). A study proposing a significant downward revision of the global inland water carbon burial, corroborating the model results on the anthropogenic perturbation by ref. 52.

    ADS  PubMed  PubMed Central  Google Scholar 

  50. Lauerwald, R., Regnier, P., Guenet, B., Friedlingstein, P. & Ciais, P. How simulations of the land carbon sink are biased by ignoring fluvial carbon transfers: a case study for the Amazon Basin. One Earth 3, 226–236 (2020).

    Google Scholar 

  51. Lapierre, J.-F., Guillemette, F., Berggren, M. & del Giorgio, P. A. Increases in terrestrially derived carbon stimulate organic carbon processing and CO2 emissions in boreal aquatic ecosystems. Nat. Commun. 4, 2972 (2013).

    ADS  PubMed  Google Scholar 

  52. Maavara, T., Lauerwald, R., Regnier, P. & Van Cappellen, P. Global perturbation of organic carbon cycling by river damming. Nat. Commun. 8, 15347 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Andersson, A. J., MacKenzie, F. T. & Lerman, A. Coastal ocean and carbonate systems in the high CO2 world of the anthropocene. Am. J. Sci. 305, 875–918 (2005).

    ADS  CAS  Google Scholar 

  54. Hastie, A., Lauerwald, R., Ciais, P., Papa, F. & Regnier, P. Historical and future contributions of inland waters to the Congo Basin carbon balance. Earth Syst. Dyn. 12, 37–62 (2021).

    ADS  Google Scholar 

  55. Lacroix, F., Ilyina, T., Laruelle, G. G., & Regnier, P. Reconstructing the preindustrial coastal carbon cycle through a global ocean circulation model: was the global continental shelf already both autotrophic anda CO2 sink? Glob. Biogeochem. Cycles 35, e2020GB006603 (2021)

  56. Landschützer, P., Gruber, N., Bakker, D. C. E. & Schuster, U. Recent variability of the global ocean carbon sink. Glob. Biogeochem. Cycles 28, 927–949 (2014).

    ADS  Google Scholar 

  57. Rödenbeck, C. et al. Global surface-ocean pCO2 and sea–air CO2 flux variability from an observation-driven ocean mixed-layer scheme. Ocean Sci. 9, 193–216 (2013).

    ADS  Google Scholar 

  58. Chau, T. T. T., Gehlen, M. & Chevallier, F. A seamless ensemble-based reconstruction of surface ocean pCO2 and air–sea CO2 fluxes over the global coastal and open oceans. Biogeosciences 19, 1087–1109 (2022).

  59. DeVries, T. et al. Decadal trends in the ocean carbon sink. Proc. Natl Acad. Sci. USA 116, 11646–11651 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gruber, N. et al. The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science 363, 1193–1199 (2019).

    ADS  CAS  PubMed  Google Scholar 

  61. Gaillardet, J., Dupre, B., Louvat, P. & Allègre, C. J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159, 3–30 (1999).

    ADS  CAS  Google Scholar 

  62. Hartmann, J., Jansen, N., Dürr, H. H., Kempe, S. & Köhler, P. Global CO2 consumption by chemical weathering: what is the contribution of highly active weathering regions? Glob. Planet. Change 69, 185–194 (2009).

    ADS  Google Scholar 

  63. Aumont, O. et al. Riverine-driven interhemispheric transport of carbon. Glob. Biogeochem. Cycles 15, 393–405 (2001).

    ADS  CAS  Google Scholar 

  64. Cai, W. J. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Annu. Rev. Mar. Sci. 3, 123–145 (2011).

    ADS  Google Scholar 

  65. Maher, D. T. & Eyre, B. D. Benthic fluxes of dissolved organic carbon in three temperate Australian estuaries: implications for global estimates of benthic DOC fluxes. J. Geophys. Res. 115, G04039 (2010).

    ADS  Google Scholar 

  66. Duarte, C. M., Middelburg, J. J. & Caraco, N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2, 1–8 (2005).

    ADS  CAS  Google Scholar 

  67. MacCreadie, P. et al. The future of blue carbon science. Nat. Commun. 10, 3998 (2019).

    ADS  Google Scholar 

  68. McLeod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).

    Google Scholar 

  69. Pendleton, L. et al. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7, e43542 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Krumhansl, K. A. et al. Global patterns of kelp forest change over the past half-century. Proc. Natl Acad. Sci. USA 113, 13785–13790 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Change 3, 961–968 (2013).

    ADS  CAS  Google Scholar 

  72. Liu, X. et al. Simulating water residence time in the coastal ocean: a global perspective. Geophys. Res. Lett. 46, 13910–13919 (2019).

    ADS  Google Scholar 

  73. Dittmar, T., Hertkorn, N., Kattner, G. & Lara, R. J. Mangroves, a major source of dissolved organic carbon to the oceans. Glob. Biogeochem. Cycles 20, GB1012 (2006).

    ADS  Google Scholar 

  74. Barrón, C., Apostolaki, E. T. & Duarte, C. M. Dissolved organic carbon fluxes by seagrass meadows and macroalgal beds. Front. Mar. Sci. 1, 42 (2014).

    Google Scholar 

  75. Maher, D. T., Call, M., Santos, I. R. & Sanders, C. J. Beyond burial: lateral exchange is a significant atmospheric carbon sink in mangrove forests. Biol. Lett. 14, 20180200 (2018).

    PubMed  PubMed Central  Google Scholar 

  76. Bogard, M. J. et al. Hydrologic export is a major component of coastal wetland carbon budgets. Glob. Biogeochem. Cycles 34, e2019GB006430 (2020).

    ADS  CAS  Google Scholar 

  77. Frischknecht, M., Münnich, M. & Gruber, N. Origin, transformation, and fate: the three-dimensional biological pump in the California Current System. J. Geophys. Res. Oceans 123, 7939–7962 (2018).

    ADS  Google Scholar 

  78. Ciais, P. et al. Empirical estimates of regional carbon budgets imply reduced global soil heterotrophic respiration. Natl Sci. Rev. 8, nwaa145 (2021).

    Google Scholar 

  79. Lovelock, C. E. & Reef, R. Variable impacts of climate change on blue carbon. One Earth 3, 195–211 (2020).

    Google Scholar 

  80. Striegl, R. G., Dornblaser, M. M., McDonald, C. P., Rover, J. R. & Stets, E. G. Carbon dioxide and methane emissions from the Yukon River system. Glob. Biogeochem. Cycles 26, GB0E05 (2012).

    Google Scholar 

  81. Butman, D. S. et al. Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting. Proc. Natl Acad. Sci. USA 113, 58–63 (2016).

    ADS  CAS  PubMed  Google Scholar 

  82. Wallin, M. B. et al. Evasion of CO2 from streams—the dominant component of the carbon export through the aquatic conduit in a boreal landscape. Glob. Change Biol. 19, 785–797 (2013).

    ADS  Google Scholar 

  83. Drake, T. W., Raymond, P. A. & Spencer, R. G. M. Terrestrial carbon inputs to inland waters: a current synthesis of estimates and uncertainty. Limnol. Oceanogr. Lett. 3, 132–142 (2018).

    CAS  Google Scholar 

  84. Maberly, S. C., Barker, P. A., Stott, A. W. & De Ville, M. M. Catchment productivity controls CO2 emissions from lakes. Nat. Clim. Change 3, 391–394 (2013).

    ADS  CAS  Google Scholar 

  85. Borges, A. V. et al. Globally significant greenhouse-gas emissions from African inland waters. Nat. Geosci. 8, 637–642 (2015).

    ADS  CAS  Google Scholar 

  86. Tian, H. et al. Anthropogenic and climatic influences on carbon fluxes from eastern North America to the Atlantic Ocean: a process-based modeling study. J. Geophys. Res. Biogeosci. 120, 757–772 (2015). A pioneering study representing the land-to-ocean carbon transfers in a land-surface scheme of an Earth system model.

    CAS  Google Scholar 

  87. Gommet, C. A. S. et al. Spatio-temporal patterns and drivers of terrestrial dissolved organic carbon (DOC) leaching to the European river network. Earth Syst. Dyn. 13, 393–418 (2022).

  88. Lauerwald, R. et al. ORCHILEAK (revision 3875): a new model branch to simulate carbon transfers along the terrestrial-aquatic continuum of the Amazon Basin. Geosci. Model Dev. 10, 3821–3859 (2017).

    ADS  CAS  Google Scholar 

  89. Ciais, P. et al. The impact of lateral carbon fluxes on the European carbon balance. Biogeosciences 5, 1259–1271 (2008).

    ADS  CAS  Google Scholar 

  90. Luyssaert, S. et al. The European land and inland water CO2, CO, CH4 and N2O balance between 2001 and 2005. Biogeosciences 9, 3357–3380 (2012).

    ADS  CAS  Google Scholar 

  91. Cavallaro, N. G. et al. in Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report (eds Cavallaro, N. et al). 1–878 (US Global Change Research Program, 2018).

  92. Hastie, A. et al. CO2 evasion from boreal lakes: revised estimate, drivers of spatial variability, and future projections. Glob. Change Biol. 24, 711–728 (2018).

    ADS  Google Scholar 

  93. Aufdenkampe, A. K. et al. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front. Ecol. Environ. 9, 53–60 (2011).

    Google Scholar 

  94. Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M. & Hess, L. L. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416, 617–620 (2002).

    ADS  CAS  PubMed  Google Scholar 

  95. Abril, G. & Borges, A. V. Ideas and perspectives: carbon leaks from flooded land: do we need to replumb the inland water active pipe? Biogeosciences 16, 769–784 (2019).

    ADS  CAS  Google Scholar 

  96. Hastie, A., Lauerwald, R., Ciais, P. & Regnier, P. Aquatic carbon fluxes dampen the overall variation of net ecosystem productivity in the Amazon Basin: an analysis of the interannual variability in the boundless carbon cycle. Glob. Change Biol. 25, 2094–2111 (2019).

    ADS  Google Scholar 

  97. Gómez-Gener, L. et al. Global carbon dioxide efflux from rivers enhanced by high nocturnal emissions. Nat. Geosci. 14, 289–294 (2021).

    ADS  Google Scholar 

  98. Abril, G. et al. Technical note: large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences 12, 67–78 (2015).

    ADS  Google Scholar 

  99. Golub, M., Desai, A. R., McKinley, G. A., Remucal, C. K. & Stanley, E. H. Large uncertainty in estimating pCO2 from carbonate equilibria in lakes. J. Geophys. Res. Biogeosci. 122, 2909–2924 (2017).

    CAS  Google Scholar 

  100. Heathcote, A. J., Anderson, N. J., Prairie, Y. T., Engstrom, D. R. & del Giorgio, P. A. Large increases in carbon burial in northern lakes during the Anthropocene. Nat. Commun. 6, 10016 (2015).

    ADS  CAS  PubMed  Google Scholar 

  101. Kastowski, M., Hinderer, M. & Vecsei, A. Long-term carbon burial in European lakes: analysis and estimate. Glob. Biogeochem. Cycles 25, GB3019 (2011).

    ADS  Google Scholar 

  102. Seitzinger, S. P. et al. Global river nutrient export: a scenario analysis of past and future trends. Glob. Biogeochem. Cycles 24, GB0A08 (2010).

    Google Scholar 

  103. Mayorga, E. et al. Global Nutrient Export from WaterSheds 2 (NEWS 2): model development and implementation. Environ. Model. Softw. 25, 837–853 (2010).

    Google Scholar 

  104. Ren, W. et al. Century-long increasing trend and variability of dissolved organic carbon export from the Mississippi River Basin driven by natural and anthropogenic forcing. Glob. Biogeochem. Cycles 30, 1288–1299 (2016).

    ADS  CAS  Google Scholar 

  105. Jones, J. B., Stanley, E. H. & Mulholland, P. J. Long‐term decline in carbon dioxide supersaturation in rivers across the contiguous United States. Geophys. Res. Lett. 30, 1495 (2003).

    ADS  Google Scholar 

  106. Ran, L. et al. Substantial decrease in CO2 emissions from Chinese inland waters due to global change. Nat. Commun. 12, 1730 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  107. Park, J. H. et al. Reviews and syntheses: anthropogenic perturbations to carbon fluxes in Asian river systems—concepts, emerging trends, and research challenges. Biogeosciences 15, 3049–3069 (2018).

    ADS  CAS  Google Scholar 

  108. Kicklighter, D. W. et al. Insights and issues with simulating terrestrial DOC loading of Arctic river networks. Ecol. Appl. 23, 1817–1836 (2013).

    PubMed  Google Scholar 

  109. Bowring, S. P. K. et al. ORCHIDEE MICT-LEAK (r5459), a global model for the production, transport, and transformation of dissolved organic carbon from Arctic permafrost regions—Part 2: model evaluation over the Lena River Basin. Geosci. Model Dev. 13, 507–520 (2020).

    ADS  CAS  Google Scholar 

  110. Laruelle, G. G., Goossens, N., Arndt, S., Cai, W.-J. & Regnier, P. Air–water CO2 evasion from US East Coast estuaries. Biogeosciences 14, 2441–2468 (2017).

    ADS  CAS  Google Scholar 

  111. St-Laurent, P. et al. Relative impacts of global changes and regional watershed changes on the inorganic carbon balance of the Chesapeake Bay. Biogeosciences 17, 3779–3796 (2020).

    ADS  CAS  Google Scholar 

  112. Durr, H. H. et al. Worldwide typology of nearshore coastal systems: defining the estuarine filter of river inputs to the oceans. Estuaries Coast. 34, 441–458 (2011).

    Google Scholar 

  113. Laruelle, G. G. et al. Continental shelves as a variable but increasing global sink for atmospheric carbon dioxide. Nat. Commun. 9, 454 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  114. Lacroix, F., Ilyina, T., Mathis, M., Laruelle, G. G. & Regnier, P. Historical increases in land-derived nutrient inputs may alleviate effects of a changing physical climate on the oceanic carbon cycle. Glob. Change Biol. 27, 5491–5513 (2021).

    Google Scholar 

  115. Cotovicz, L. Jr, Knoppers, B., Brandini, N., Santos, S. & Abril, G. A strong CO2 sink enhanced by eutrophication in a tropical coastal embayment (Guanabara Bay, Rio de Janeiro, Brazil). Biogeosciences 12, 6125–6146 (2015).

    ADS  Google Scholar 

Download references

Acknowledgements

P.R. and P.C. acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska‐Curie grant agreement number 643052 (C-CASCADES). P.R. also received financial support from BELSPO through the project ReCAP, which is part of the Belgian research programme FedTwin and from the European Union’s Horizon 2020 research and innovation programme under grant agreements number 776810 (VERIFY) and number 101003536 (ESM2025–Earth System Models for the Future). P.C. has been co-funded by the French Agence Nationale de la Recherche (ANR) Convergence Lab Changement climatique et usage des terres (CLAND), the European Space Agency Climate Change Initiative ESA-CCI RECCAP2 project 1190 (ESRIN/ 4000123002/18/I-NB) and Observation-based system for monitoring and verification of greenhouse gases (VERIFY, grant agreement number 776810). L.R. gratefully acknowledges support from the Alfred P. Sloan Foundation Research Fellowship, the Princeton Catalysis Initiative at Princeton University and the NASA OCO‐2 Science Team Grant 80NSSC18K0893. R.G.N. acknowledges support from NASA Carbon Cycle Science and Interdisciplinary Science Programs and NSF Chemical Oceanography Program. This study benefitted from discussions with W.-J. Cai, A. Coppola, P. Friedlingstein and N. Gruber.

Author information

Affiliations

Authors

Contributions

P.R. and P.C. initiated the design of the study that led to this paper. P.R. and L.R. directed the analysis and coordinated the conception and writing of the paper. L.R. designed all the figures. P.R. and R.G.N. co-led the synthesis of LOAC fluxes. P.C., R.G.N., L.R. and P.R. contributed to the budget analysis and the writing of the paper. P.R. and L.R. have contributed equally to this study.

Corresponding author

Correspondence to Pierre Regnier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks David Butman, Galen McKinley and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary text, Figs. 1, 2, Tables 1–3 and References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Regnier, P., Resplandy, L., Najjar, R.G. et al. The land-to-ocean loops of the global carbon cycle. Nature (2022). https://ift.tt/3YSyDhK

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://ift.tt/3YSyDhK

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Adblock test (Why?)



"cycle" - Google News
March 16, 2022 at 11:48PM
https://ift.tt/QrqveYJ

The land-to-ocean loops of the global carbon cycle - Nature.com
"cycle" - Google News
https://ift.tt/gGUlhXP
https://ift.tt/Ea8fqTF

Bagikan Berita Ini

0 Response to "The land-to-ocean loops of the global carbon cycle - Nature.com"

Post a Comment

Powered by Blogger.